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SUDDEN BLOCKING OF A SUPERCRITICAL OPEN-CHANNEL FLOW

UDC 532.59V. I. Bukreev and A. V. Gusev

This paper reports results of experiments in which a steady-state nonuniform supercritical open-
channel flow was suddenly blocked by a rapidly falling gate at a downstream distance of about one
hundred critical depths. This results in a hydraulic jump propagating upstream. Experimental data on
the shape, height, and propagation speed of its leading front are given. It is shown that the parameters
of the jump differ significantly from the values found using a quasi-stationary approach.

Key words: experiment, nonuniform supercritical flow, unsteady hydraulic jump, height and
propagation speed of the leading front.

Gravity waves of the bore type (a moving hydraulic jump) result from the propagation of a high tidal wave
or a tsunami over a river or fjord, the fall of rock or meteorite fragments into a pool, dam or lock-gate breaking,
reservoir’s bank landslides, sudden stop of a tank partly filled with a liquid, etc. Mathematical models of various
degrees of complexity have been developed to calculate such catastrophic waves. Computational methods based on
the Saint Venant equations have the widest application [1–4]. Like the first shallow-water approximation [5], they
use the assumption of a hydrostatic pressure distribution over the depth. The same assumption is also used in the
control volume method [6].

In the first shallow-water approximation, cnoidal and solitary waves do not exist and all five types of hydraulic
jump (see [7]) are simulated by a free-surface discontinuity. Cnoidal and solitary waves are described in the second
shallow-water approximation [5], which takes into account deviations from the hydrostatic law. The most perfect
mathematical models take into account not only deviations from the hydrostatic law but also flow vorticity and the
turbulent mixing due to waves. Two such models are given in [8].

The results of an experimental verification of the first shallow-water approximation using as an example the
problem of decay of an initial free-surface discontinuity above a bottom step in a rectangular channel are given in [9].
A mathematical model taking into account turbulent mixing was verified experimentally in [10]. The objective of
the present study was to obtain experimental information to test different computational methods using as an
example the problem of sudden blocking of a supercritical flow. Sudden blocking of a subcritical flow was studied
experimentally in [11].

In practice, the hydrodynamic processes in question occur, for example, in reflection of nonlinear waves
from vertical walls in shipping locks, ship elevators, tankers, ballast tanks, and submerged decks. The results of
the studies performed are also useful for a number of gas-dynamics applications provided that the gas-hydraulic
analogy is applicable.

A diagram of the experiment and the main notation are given in Fig. 1. In a rectangular channel of
width B = 6 cm with an even horizontal bottom, a steady-state supercritical (rapid, according to the hydraulic
nomenclature of [12]) flow was produced by flowage from an orifice under a sharp-edged shield. At a distance xg

downstream from the shield, a rapidly falling gate was placed, which could block the flow completely or partially in
a time of about 0.01 sec. The moment of blocking (with the indicated uncertainty) was taken to be the reference
time t. Before blocking, friction on the Plexiglas wall and bottom of the channel led to the formation of a so-called
raised water curve [12], i.e., the free-surface level gradually increased downstream. In hydraulics, the pressure loss
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Fig. 1. Diagram of the experiment: 1) shield; 2) gate.

due to friction is taken into account by the Chesy coefficient C [12], which has the same dimension as
√

g, i.e.,
m0.5/sec (g is the acceleration of gravity).

The volume discharge Q was measured by a standard Venturi flowmeter, the raised water curve h1(x) before
blocking by a measuring needle, and the fluid depth change after blocking h(t) at a number of fixed points on
the longitudinal x coordinate by wavemeters. The time ∆t of longitudinal displacement of a chosen point on the
wave profile by a distance ∆x between two fixed wavemeters was used to calculate the quantity c = ∆x/∆t, which
depends on the choice of the point on the profile, on x and t, and on a set of parameters of the problem Πi

(i = 1, . . . , n). The data given below pertain to the speed of motion of the point in the middle of the height of the
leading wave front. It is called the speed of wave propagation. In comparing calculation and experimental data,
one should bear in mind that in theory the speed of motion of a chosen point on the wave profile and the (phase)
speed of propagation coincide only in the case of steady-stet solutions of the corresponding equations.

The obtained value of c referred to the coordinate of the middle of the interval ∆x. The results of mea-
surements with wavemeters were used to determine the height of the leading wave front a(x, t,Πi) and the time
of propagation of the leading front from the rapidly falling gate to the wavemeter tp(x,Πi). The total root-mean
square error did not exceed 2% for c, 3% for a, and 1% for tp.

The set of basic dimensional parameters of the problem Πi includes the channel width B, the specific
discharge q = Q/B, the Chesy coefficient C, the acceleration of gravity g, the opening of the shield b (a hydraulic
term from [12]), and the distance from the shield to the rapidly falling gate xg. For the time intervals studied,
the parameters characterizing the real law of motion of the gate, the fluid viscosity, and the entrainment of air
during wave breaking were of secondary importance. Next, the critical depth h∗ = (q2/g)1/3 [12] is used as the
characteristic linear scale and the quantities V∗ = (gh∗)1/2 and T = (h∗/g)1/2 are the characteristic velocity and
time scales. The corresponding dimensionless quantities are denoted by the superscript 0.

The effect of the channel width was manifested mainly in the fact that the depth in the compressed section hc

(a hydraulic term from [12]) and the Chesy coefficient differed from the corresponding values for an infinitely wide
channel. If hc is represented as hc = εb, then for an infinitely wide channel, ε = 0.65−0.67 [12]. In the experiments,
ε ≈ 0.62. Information on the Chesy coefficient is given below. In the experiments discussed, the parameters B,
C, and xg did not vary. Before flow blocking at the channel exit (at x = xe), the water freely escaped into the
atmosphere and the so-called second critical depth, h∗∗ ≈ 0.77h∗, was established [13]. The rapidly falling gate was
placed at a value xg < xe such that the effect of the conditions at the channel exit could be neglected.

Figure 2 shows examples of a raised water curve h0
1(x

0) and a conjugate depth curve h0
2(x

0). By the
definition [12],

h0
2 = h0

1[
√

1 + 8/(h0
1)3 − 1].

Figure 2 gives the values of the compressed depth h0
c and the coordinates of three characteristic cross sections of

the channel: with the compressed depth x0
c , at the location of the rapidly falling gate x0

g, and at the channel exit
x0

e. On the boundary separating the subcritical and supercritical states of the flow, h0
1 = h0

2 = 1. The data of
Fig. 2 demonstrate that before blocking, the flow was in the supercritical state (h0

1 < 1) over the entire length of
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Fig. 2. Mutually conjugate depths at h∗ = 2.5 cm and b = 1.66 cm (the values
of C are given in Fig. 3).
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Fig. 3. Chesy coefficient C0 = C/
√

g for h∗ = 2.5 cm and b = 1.66 cm.

the channel downstream of the shield. After blocking, transition to the subcritical state from the depth h0
1 to the

depth h0
2e > 1 occurred by a hydraulic jump moving upstream.
The Chesy coefficient was determined by solving the inverse problem based on the differential equation for

the raised water curve, which is given, for example, in [12]. In the case of a channel with a zero bottom slope, this
equation leads to the formula

C(x) =

√
q2g(B + 2h1)

−(dh1/dx)B(gh3
1 − αq2)

,

where the coefficient α takes into account the nonuniformity of the velocity distribution over the depth. If, in
this formula, one uses measured values of h1(x) and the derivative calculated from them dh1/dx, the obtained
values of C have a wider spread, which is typical of the solution of inverse problems. Therefore, the experimental
data for h1(x) were fitted by the least-squares method. In this method, the choice of the smoothing function is of
significance. For the experimental data in Fig. 2, the optimal approximation (at least in the interval 5 < x0 < 85)
is given by

h0
1(x

0) = 0.247 + 0.0037x0 + 0.000007(x0)2.

The results of calculation of the dimensionless coefficient C0 = C/
√

g using this approximation function are
given in Fig. 3. Since the channel walls and bottom were smooth, the values of C0 were smaller than those for
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Fig. 4. Height (1), travel time (2), and speed of propagation of the leading wave front (3) after flow
blocking for h∗ = 2.5 cm and b = 1.66 cm.

Fig. 5. Second conjugate depth under steady-state (h0
2) and unsteady (h0

2e) conditions: curves 1
and 2 refer to h0

2 and h0
2e, respectively; h∗ = 2.5 cm and b = 1.66 cm.
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Fig. 6. Variation in the free-surface level h0(t0) in the channel cross section x0 = 65.4 for h∗ = 2.5 cm
and b = 1.66 cm (the time is reckoned from the moment of flow blocking).

natural channels [12]. In addition, in these experiments, the coefficient C0 increased with increase in x0. This was
due to rather small values of x0 and B.

Figure 4 gives plots of the functions a0(ξ), t0p(ξ), and c0(ξ), where ξ = x0
g − x0. The height of the jump

and the travel time decrease continuously, and the propagation speed of the leading front increases continuously (in
absolute value) with increase in ξ. This is due to the fact that after flow blocking the hydrodynamic processes are
substantially unsteady.
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The quasi-stationary approach is inappropriate for the analysis of the processes occurring after blocking
of supercritical flows. Figure 5 shows the variation in flow depth behind the jump h0

2(ξ) for the quasi-stationary
approach (see also curve 2 in Fig. 2) and the variation in the real depth behind the jump h0

2e(ξ) = h0
1 + a0 after

flow blocking. It is evident that the values of h0
2 and h0

2e differ considerably, especially for small ξ.
To test the computational methods used, Fig. 6 shows as an example the depth variation with time at a

fixed cross section of the channel. In this example, the wave head has the shape of a classical hydraulic jump.
Unlike in the case of reflection of a dam-break wave from a vertical wall [1, 2], the depth behind this jump increases
continuously due to supply of discharge water from the inward flow.

Experiments for various combinations of parameters showed that for the blocking of supercritical flows, the
region of existence of undular hydraulic jumps in the space of problem’s parameters is considerably narrower than
that in the case of sudden blocking of a subcritical flow [11]. Therefore, one should expect that the computational
method based on the Saint Venant equations, whose main drawback is an inadequate description of undular jumps,
has a wider range of applicability in the problem in question than in problems of dam breaking or subcritical-flow
blocking. An advantage of this method over the other methods is that it provides better accounting for the energy
losses due to friction, which are of greater significance in supercritical flow calculations than in calculations of wave
propagation over a quiescent fluid or a subcritical flow.

Recently, in tests of computational methods for nonlinear waves in finite-depth water, wide use has been
made of dam-breaking processes in the case of an initially quiescent fluid [14]. The features of these processes for
nonuniform flows are of interest for testing computational methods in which discharge appears in the boundary
conditions. In applications, such boundary conditions must be specified, for example, in problems of a tsunami
entering a river or the propagation of release waves from reservoirs.
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